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Abstract
A noisy vector channel operating under a strict complexity constraint at the
receiver is introduced. According to this constraint, detected bits, obtained by
performing hard decisions directly on the channel’s matched filter output, must
be the same as the transmitted binary inputs. An asymptotic analysis is carried
out using mathematical tools imported from the study of neural networks, and it
is shown that, under a bounded noise assumption, such complexity-constrained
channel exhibits a non-trivial Shannon-theoretic capacity. It is found that
performance relies on rigorous interference-based multiuser cooperation at the
transmitter and that this cooperation is best served when all transmitters use
the same amplitude.

PACS numbers: 89.70.+c, 05.20.−y, 84.35.+i

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Multiple-access systems described by vector channels (MIMO, CDMA) are prominent in
modern wireless communications. As such, revealing their information-theoretic properties
has been a fruitful source of ongoing research (see, e.g., [1, 2]). In these systems, information
is conveyed simultaneously from a group of sources to another group of sinks over the same
physical medium and bandwidth. These transmissions are not orthogonal and interfere with
each other. Detrimental effects such as multiaccess interference and noise can be completely
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eliminated in theory by adopting optimal detection schemes and sophisticated error-correcting
codes [3].

As in many problems of reliable (i.e., error-free) communication via a detrimental channel,
typical information-theoretic investigations of multiaccess systems are often carried out under
an upper-bounded transmission power or limited bandwidth, but usually no restrictions on
complexity are imposed. In the era of pervasive and ubiquitous wireless communication
systems, involving only limited computing power, there is an emerging interest in the workings
of a stricter complexity-constrained scenario [4].

In this contribution, such a reduced complexity setting is introduced and analysed. This
reduced complexity scenario requires that detected bits, sliced at the output of a bank of filters
matched to the vector channel, be the same as the transmitted binary inputs. This constraint
is analogous to the constraint on single-neuron (or spin) flip metastable states of the Hopfield
model for neural networks [5, 6]. We term this scheme vector input preselection (VIP),
as transmitted bit combinations are preselected so as to comply with this strict constraint.
Such a transmission scheme would result in the appealing use of low-cost receivers, in the
context of reduced signal processing and computing. In a sense, this scheme is equivalent
to outsourcing part of the detection complexity back to the transmitters. However, although
the receivers need only do minimal signal processing, communication does not conclude until
they properly interpret the received bits. This can be done using a decoding table identical to
the transmitters’ joint coding table. Although the complexity of this task cannot be outsourced
back to the transmitters, it is solved by proper memory allocation [3].

The Hopfield model has been used before for developing suboptimal multiuser detectors
[7–9]. In this contribution, the Hopfield model is used to compute the Shannon capacity of
the noisy VIP channel in the many-users limit, revealing the cost in ‘information rate’ caused
by limiting the channel complexity. Interestingly, we find that contrary to intuition, the VIP
channel yields a non-trivial capacity.

We analyse the effect that the power distribution among the transmitters has on the
channel capacity. Although equal power interference is found to be the worst case interference
scenario for linear multiuser receivers [2] we find that, for the VIP channel, optimal cooperative
interference occurs when all transmitters use equal amplitudes. Indeed we find that cooperation
through interference is a key feature of the VIP channel, which is in contrast to systems without
input preselection, where higher channel capacity is obtained by interference mitigation at the
receiver [2, 10, 11]. It is important to note that the VIP rule employed in this paper is
conceptually different to the known technique of multiuser precoding (or pre-equalization)
[12–14] in which there is no restriction on the input signalling.

The organization of the present paper is as follows. The basic vector channel model is
outlined in section 2. The asymptotic system analysis is briefly introduced in section 3. In
section 4, the expression for the asymptotic information capacity of the channel is presented.
The results are shown in section 5 and are further discussed in section 6. Appendices A and
B provide full mathematical details.

2. Channel model

Consider a synchronous noisy vector channel with T transmitters and N receivers. The
channel is characterized by an N ×T random matrix S with independent identically distributed
entries with unit variance and zero mean. The matrix S is assumed to be perfectly known at
both ends of the channel. The input vector consists of T binary entries which are subject to
transformation by the channel matrix S. The N-length received column vector is projected
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back into the T-dimensional information space by passing through a bank of filters matched
to the channel matrix S.

Thus overall, an input column vector i � (i1, . . . , iT ) is transformed into an output
ø � (ø1, . . . , øT ) as follows:

ø = 1

N
S†SAi + n, (1)

where the diagonal matrix A � diag{a1, . . . , aT } controls the transmission power. The vector
n is a T-dimensional random vector with arbitrary additive noise components bounded to the
interval (−κ, κ), where the threshold κ is a non-negative constant.

2.1. Vector input preselection

Consider a potential energy surface in �T where each i ∈ {−1, 1}T has its own well of
attraction. When an input vector i is perturbed by the channel operator as in (1), the resulting
state may remain within the initial well or jump to another well (or to a local maximum
between several wells). In the model under consideration, the vector ø ∈ �T is within the
well of attraction of i when sgn(ø) = i, where the equality and sign function apply to each of
the T vector components.

To ease the task of detection at the receiver, the transmitter, having perfect channel state
information, carries out a vector input preselection (VIP) process. To meet the VIP rule an
input vector i must be basin invariant under channel perturbation (1) or, equivalently, satisfy
the following equality:

i ≡ sgn

{
1

N
S†SAi + n

}
. (2)

Although the VIP process restricts the vectors eligible for transmission to a subset of the 2T

possible binary vectors, the receiver can be certain that reception is error free by a trivial use
of conventional demodulation

i = sgn(ø), (3)

and without the use of complicated signal processing. The input vectors which satisfy (2) are,
in the noiseless limit, equivalent to the metastable states of the Hopfield model.

The VIP rule is effectively outsourcing the complexity of detection from the receiver to
the transmitter, which must coordinate its multiple inputs, thus limiting its choice of symbols
for transmission. Figure 1 shows a diagram of the multiaccess VIP channel, which may
describe, for example, a cooperative MIMO channel. An important feature in this scheme
of simple detection by input preselection is that throughput bounds are invariant to the exact
noise probability distribution, depending only on the noise upper and lower bounds (−κ, κ).

3. Channel states and the thermodynamic limit

Equation (2), which represents the condition that a vector i must satisfy in order to remain
within its basin of attraction, may be rewritten as follows:∫

((κ−1)β−1,∞)T
dT λ δ{T −1S†SAi − (β−1I + Λ)i} = 1, (4)
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(a)

(b)

Figure 1. (a) The VIP-vector channel. (b) A VIP-MIMO channel example with T transmitters
(Tx) and N receivers (Rx).

where β ≡ T/N, I is the identity matrix and the T variables of integration are the eigenvalues
of the diagonal matrix Λ. The total number N of input symbols that obey the VIP rule is thus
given by

N(S; T , β, A, κ) =
∑

i

∫
((κ−1)β−1,∞)T

dT λ δ{T −1S†SAi − (β−1I + Λ)i}, (5)

where the sum is taken over all 2T possible input vectors that may, in principle, be generated
at the transmitter.

The channel matrix S can exist in many different quenched states. We may consider, for
simplicity and illustrative purposes, a channel matrix consisting of independent identically
distributed binary entries. While microscopically we specify the state of the channel as one
of 2NT equiprobable states S (henceforth microstates), macroscopically the behaviour, or
macrostate, of the channel may be expressed as the number of inputs it allows to fulfil the VIP
rule. Although the specific set of such inputs depends on the channel microstate, it is only
the cardinality of the set that determines a macrostate. Therefore, more than one microstate
may correspond to the same macrostate. Let �(N; T , β, A, κ) be the number of channel
microstates that allow exactly and no more than N inputs to satisfy the VIP rule, that is the
number of microstates that correspond to macrostate-N for T transmitters, a channel load β, an
amplitude distribution A and a noise bound κ . There are a total of 2NT possible microstates,
and 2T possible macrostates, which entails

2T∑
N=1

�(N; T , β, A, κ) = 2NT . (6)

Figure 2 shows a macrostates–microstates diagram for the case of a noiseless channel with
N = T = 4 and equal amplitudes. Because all of the microstates are equiprobable we may
directly convert the number of microstates into probability dividing by 2NT . For the case
shown in figure 2, the most likely macrostate (that is, the one realized by more microstates
than any other) is that which allows six of the sixteen possible inputs to fulfil the VIP rule.

The so-called basic postulate of statistical mechanics is the equiprobability of microstates
in a closed system, and central to ensemble theory is the assumption that all thermodynamic
quantities can be written as an ensemble average of a suitable microscopic observable [15].
We anticipate that N grows exponentially with T, and therefore the typical number N of VIP
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Figure 2. Macrostates–microstates diagram for a noiseless channel represented by a binary matrix,
with four transmitters and four receivers. The transmitters all employ equal amplitudes. The most
likely macrostate is that which allows six of the sixteen possible inputs to fulfil the VIP constraint.

vectors in the large system is given by the extensive average exp ln N, where the overbar
denotes the configurational average with respect to all channel microstates S. In the following,
the assumption is made that as the dimensions of the system go to infinity at constant ratio
(T ,N → ∞; T/N = β), the microstate (probability) distribution converges to its own
average and fluctuations away from the most likely macrostate vanish5. This entails that the
distribution of N is largely peaked around N, which allows us to simplify the problem by
taking the so-called annealed approximation and directly performing the average of N over
the quenched channel states S. This assumption is not uncommon in the study of various spin
and neural systems exhibiting quenched interactions (see, e.g., [5, 6, 16–22]). The annealed
approximation is for now accepted, and its validity will be further addressed in section 6, where
it will be discussed and tested against finite-size simulations. The self-averaging assumption
allows us to write

N(S; T , β, A, κ)
T →∞−→ N (T , β, A, κ) ≡ N(S; T , β, A, κ), (7)

where N is (an upper bound on) the typical number of valid inputs. N may be rewritten as
follows:

N (T , β, A, κ) =
∑

i

∫
((κ−1)β−1,∞)T

dT λ δ{T −1S†SAi − (β−1I + Λ)i}. (8)

4. Information capacity

As discussed in section 3, it is assumed that all channel states will exhibit similar behaviour as
the channel dimensions become larger. This behaviour is characterized by the number N of
inputs that meet the VIP criterion (2). The number of VIP symbols in the large-system limit
may be found using the asymptotic mathematical trickery shown in appendix A (subsection
A.1); the resulting expression is

N (T , β, A, κ) = 2T T 2

4π2β2
exp

{
T

β
g(β, A, κ)

}
, (9)

where

g(β, A, κ) = χ +
1

2
+

χ2U

2φ
+

1

2
ln

φ

U
+ β

∫ ∞

0
dUψ(U) ln Q(σ), (10)

5 This dominant macrostate is equivalent to what in information theory is known as the set of typical sequences.
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and the function ψ(U) is the probability density function for the power of the T transmitters
(squared eigenvalues of A). The quantities φ and χ are the simultaneous solutions to the
following coupled equations:

1 +
χU

φ
+

√
β

φ

∫ ∞

0
dUψ(U)

√
U

Q′(σ )

Q(σ)
= 0

1 − χ2U

φ
− β

∫ ∞

0
dUψ(U)

Q′(σ )

Q(σ)
σ = 0




, (11)

where Q(σ) = 1√
2π

∫ ∞
σ

dt exp
(− t2

2

)
and σ = κ+χ

√
U√

βφ
.

As all inputs eligible for reliable transmission are a priori equiprobable, the uncertainty
function for the set of valid inputs at the transmitter is equivalent to the Boltzmann entropy.
The uncertainty function is known in information theory as Shannon entropy, and in the VIP
channel the Shannon entropy at the transmitter directly yields the Shannon capacity, which is
the theoretical upper bound on the information transfer rate [3]. The Shannon capacity of an
asymptotic VIP channel is given in bits/symbol/transmitter as

C∞(β, A, κ) = lim
T →∞

log2 N (T , β, A, κ)

T
. (12)

5. Results

5.1. Effect of the amplitude distribution on the asymptotic capacity of the VIP channel

In order to evaluate the performance of the VIP channel when the transmitters send their
information with unequal amplitudes, power is assigned to them according to a chi-square
distribution, which is often used to model multipath diversity in multiple-access channels [23].
The power distribution function ψ(U) has variance 2/r and average power U :

ψ(U ; r, U) = r

U

(rU/U)r/2−1

2r/2�(r/2)
exp

(
− rU

2U

)
, (13)

where �(·) is the Euler gamma function. We find that, regardless of the value of κ , the
number of VIP inputs N is maximized by a power distribution which assigns equal power to
each of the T transmitters. This result is in contrast to the case of linear multiuser receivers,
where equal power interference is the worst interference case scenario [2]. Figure 3 shows
how the Shannon capacity of the channel is affected by the power distribution among the
T transmitters.

5.2. Noise effects on the asymptotic capacity of the VIP channel

Figure 4 displays the asymptotic capacity C∞ versus the channel load β for different noise
bounds κ . We observe that, for noise bounds not greater than the transmitter’s amplitude
(henceforth taken to be 1 for all T transmitters), the channel capacity decreases with the
channel load and the noise bound. An interesting phenomenon is that when the noise bound
is sufficiently large, the multiuser interference becomes beneficial, as it may neutralize part of
the noise. Figure 5 shows a plot of the asymptotic capacity C∞ versus the noise threshold κ

for different channel loads. Two regimes may be identified: for noise thresholds smaller than
the transmitting amplitude, an increase in the channel load results in a lower capacity; on the
other hand, as the noise threshold becomes slightly larger than 1, multiuser interference plays
a constructive role and, as we can see in figure 6, the optimal channel load may adopt a non-
trivial value. This indicates that, in the right conditions, the channel capacity per transmitter
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Figure 3. Asymptotic capacity C∞ as a function of the load β for different distributions of power
among the transmitters. The curves shown are for a noiseless (κ = 0) system and they correspond
to different chi-square power distributions with average 1. The inset represents a linear zoom into
the β = 0 to β = 2 region.

Figure 4. Asymptotic capacity C∞ versus channel load for different noise bounds. The
T transmitters transmit with unit amplitude.

Figure 5. Asymptotic capacity C∞ versus the noise threshold for different channel loads. The
T transmitters transmit with unit amplitude.

may be increased by either adding more transmitters and/or by turning off some receivers.
This effect may also appear for noise bounds smaller than 1 when the power distribution is not
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Figure 6. Asymptotic capacity C∞ versus channel load for noise bounds greater than the
transmitter’s amplitude (taken to be 1 for all transmitters).

Figure 7. Asymptotic capacity C∞ as a function of the load β for different distributions of power
among the transmitters. The curves shown are for a noisy (κ = 0.9) system and they correspond
to different chi-square power distributions with average 1.

optimal, as shown in figure 7. In figure 5 we can also observe how, depending on the channel
load, when the noise threshold is sufficiently large, reliable communication in the simple VIP
channel becomes infeasible at any rate.

6. Discussion

6.1. Multiaccess interference and cooperation in the VIP channel

Although the proposed channel model entails low complexity at the receiver end, it requires
strict cooperation among transmitters to carry out the vector input preselection. As shown in
figure 3 and contrary to linear multiuser receivers [2], this cooperation is best served when all
transmitters send with identical amplitude. This indicates that, in this joint coding scheme, all
transmitters are equally important when it comes to information and cooperative interference.
While at moderate loads the effect of multiuser cooperation in the channel capacity is most
significant, the influence of their power distribution disappears for vanishing channel loads,
i.e. when multiaccess interference disappears. Conversely, as the channel load becomes very



Information and multiaccess interference in a complexity-constrained vector channel 5249

Figure 8. Asymptotic capacity C∞ versus channel load for different amounts of linear parallel
interference cancellation stages. The inset represents a zoom into the β = 0.02 to β = 0.2 region.

large, the adverse effects of multiaccess interference are overwhelming and any multiuser
cooperation is hopeless.

Although increasing the load β of the channel is generally detrimental to the performance
bounds, we observe that, for sufficiently large noise bounds, it may be beneficial to have a
greater channel load as shown in figure 6. For instance, when the noise bound κ equals 1.1,
bringing the channel load β from 0.1 to 1 increases the capacity per transmitter by a factor of
10. This means that turning off 90% of the receivers would increase the total channel capacity
by a factor of 10 or, conversely, that if the number of transmitters is multiplied by 10, then the
total channel capacity (capacity per transmitter × number of transmitters) would increase by
a factor of 100.

Consider the case of equal amplitudes and no channel noise; then the only factor hindering
VIP performance appears to be the multiaccess interference as contained in the channel load
β. This suggests, in the spirit of [2], introducing some stages of interference cancellation at
the receiver as a strategy to seek improved VIP performance. If we introduce D stages of
linear parallel interference cancellation (LPIC), the resulting channel model is

ø =
D∑

q=0

(
I − 1

N
S†S

)q 1

N
S†Si, (14)

and its associated VIP rule such that (3) yields error-free detection is

i ≡ sgn




D∑
q=0

(
I − 1

N
S†S

)q 1

N
S†Si


 . (15)

As shown in appendix A (subsection A.2), the number of VIP inputs, and hence the asymptotic
capacity of this channel, may be found as a function of the channel load β and the number D of
LPIC stages. The surprising result is that performance declines as the number of interference
cancellation stages increases. This remarkable behaviour, shown in figure 8, reinforces the
indication that, although an increased channel load results in a lower capacity, multiaccess
interference itself is a key factor in the performance of the VIP channel. If the transmitters are
expected to carry out a vector input preselection, they must be allowed to jointly code their
input through interference-cooperation. LPIC neutralizes the constructive role interference
takes in the vector input preselection process.



5250 R de Miguel et al

Figure 9. Asymptotic spectral efficiency ε∞ as a function of the load β for different distributions
of power among the transmitters. The curves shown are for a noiseless (κ = 0) system and they
correspond to different chi-square power distributions with average 1.

6.2. Efficiency versus information rate in the VIP channel

Both multiple-input/multiple-output (MIMO) and code-division multiple-access (CDMA)
channels may be modelled by equation (1). While in the MIMO case the T transmitters
represent transmitting antennas and the N receivers correspond to receiving antennas, in the
case of CDMA the T transmitters represent synchronous users sending their bits to a base
station, and the number N of receivers represents the spreading factor at the base station,
i.e. the number of chips per received symbol. Note, in passing, that for heavily overloaded
systems (i.e. β = T/N → ∞) the capacity curve decay of the noiseless case coincides with
the capacity of the Hopfield model (see equation (12) in [5] for an analytical approximation
of the capacity curve at large loads).

In the case of CDMA communication, a useful measure of efficiency is the spectral
efficiency, which is the total capacity per chip, or the total number of bits per chip that can
be transmitted reliably. The asymptotic spectral efficiency ε∞ of the channel is given by the
product of the load β and the asymptotic capacity C∞:

ε∞(β, A, κ) ≡ βC∞(β, A, κ). (16)

Spectral efficiency of matched filter demodulation without user cooperation is known [24] to
monotonically increase with the load, but to be upper bounded by 1.44 bits/chip. As shown
in appendix B it can be easily verified that the spectral efficiency ε∞ of the cooperative VIP
channel is an unbounded monotonically increasing function of β as shown in figure 9. This
means that in order to achieve maximum spectral efficiency the load needs to be infinitely
large, which in turn means zero capacity or data transmission rate. Conversely, if the channel
were to achieve maximum capacity (which is 1 bit per channel use and user) the bandwidth
burnt by spreading would be extremely high, and the spectral efficiency zero.

Drawing an analogy between spectral efficiency and exergy efficiency allows us to make
a connection with irreversible thermodynamics. Just like maximum exergy efficiency (second
law efficiency) can only be attained at extremely slow energy conversion rates (cyclical
processes), it is only at vanishing data rates that this channel approaches maximum spectral
efficiency. This is in synchrony with the inherently irreversible nature of communication
processes. The second law of thermodynamics states that in any real (irreversible) process
some power will inevitably be dissipated and that it is only in ideal (quasistatic) processes that
dissipation vanishes and maximum exergy efficiency can be reached.
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Figure 10. Asymptotic curves obtained by the asymptotic annealed approximation (solid curves)
are tested against both annealed (T −1 log N) and quenched (T −1 log N) finite-size simulations for
T = 20 transmitters. The solid curves are for noise bounds κ = 0 (top), κ = 0.5 (middle) and
κ = 0.75 (bottom). An ensemble of 100 random binary channel matrices was used in the finite-size
simulations.

6.3. The annealed approximation

As mentioned in section 3, as the total number of VIP inputs scales exponentially with T,
the relevant quantity to be computed is the quenched average (log N). We made use of the
annealed approximation and computed instead the annealed average (log N) which, as Jensen’s
inequality tells us, provides an upper bound to the former. We carried out both annealed and
quenched finite-size simulations and found that the results obtained with the two methods are
essentially identical within error bars for as few as T = 20 transmitters. As shown in figure 10,
they are also in good agreement with the asymptotic annealed approximation; the agreement
appears to weaken for increasing β as decreasing N takes the finite-size simulations further
away from the asymptotic limit.

An asymptotic calculation of T −1log N would require use of the replica method [25].
Bray and Moore [26, 27] found that for infinite range spin glasses both T −1log N and T −1 log N

(with N being the number of metastable states within an infinitesimal energy band) become
identically equal for vanishing off-diagonal order parameters in replica space. They also
conducted a stability analysis and found that these diagonal solutions are indeed locally stable,
which suggests that the number of metastable states is itself self-averaging. The agreement
among both finite-size averages in the VIP channel, as well as between them and the asymptotic
approximation, suggests that a similar conclusion applies to the number of VIP inputs given by
equation (2) or at least that the annealed approximation tightly upper bounds the information
capacity of the channel.

7. Conclusion

We have examined the asymptotic capacity of a vector channel under a strict input preselection
routine. With this routine, the complexity of detection is partially outsourced from the receivers
back to the transmitters, which must observe a rigorous interference-based multiaccess
cooperation scheme. In order to validate the analytically derived results, we evaluated
the capacity of a noisy VIP channel with a large yet finite number T of transmitters.
Using exhaustive search simulations we verified that convergence is fast and the asymptotic
approximation reasonable for as few as 20 transmitters. Determining the explicit VIP
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transmissions in a diagrammatic manner (rather than via brute-force enumeration, which
becomes infeasible for large T ) remains an interesting open research question.
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Appendix A. Counting MIMO-VIP inputs in the self-averaging limit

Consider the VIP channel (1):

ø = 1

N
S†SAi + n. (A.1)

If we introduce D stages of linear parallel interference cancellation (LPIC) at the receiver, the
channel becomes

ø =
D∑

q=0

(
I − 1

N
S†S

)q 1

N
S†Si + n, (A.2)

and its associated VIP rule is

i ≡ sgn




D∑
q=0

(
I − 1

N
S†S

)q 1

N
S†Si + n


 . (A.3)

Note that if we let D = 0 (no interference mitigation) we recover the original VIP rule
(2) from section 2. The VIP rule (A.3) may be restated as follows:

n(S, i; T , β, A, κ,D)

≡
∫

((κ−1)β−1,∞)T
dT λ δ


T −1

D∑
q=0

(
I − 1

N
S†SA

)q

S†SAi − (β−1I + Λ)i


 = 1,

(A.4)

where the T variables of integration are the eigenvalues of the diagonal matrix Λ. The total
number N of VIP inputs is obtained by summing over all possibilities:

N(S; T , β, A, κ,D) =
∑

i

n(S, i; T , β, A, κ,D). (A.5)

As discussed in section 3, as the dimensions of the system go to infinity at constant ratio
(T ,N → ∞; T/N = β) then the self-averaging property holds, and we may write

N(S; T , β, A, κ,D)
T →∞−→ N (T , β, A, κ,D) ≡ N(S; T , β, A, κ,D), (A.6)

where the overbar denotes the configurational average with respect to the channel matrix S.
Then, in the large-system limit equation (A.5) may be rewritten as follows:

N (T , β, A, κ,D) =
∑

i

n(S, i; T , β, A, κ,D). (A.7)
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We may rewrite the δ-function in (A.4) as a Fourier sum, resulting in

N (T , β, A, κ,D) = 1

(2π)T

∫
((κ−1)β−1,∞)T

dT λ

∫
R

T

dT ω

×
∑

i

exp{ jβ−1ωωω†i} exp{ jωωω†Λi}exp


−jT −1

D∑
q=0

ωωω†
(

I − 1

N
S†SA

)q

S†SAi


.

(A.8)

The integrals over the T components of ωωω run from −∞ to ∞. We may then multiply all the
components in ωωω by the corresponding component in i without altering the result (recall that
the components of i are unit-amplitude binary). Hence we may rewrite (A.8) as follows:

N (T , β, A, κ,D) = 1

(2π)T

∫
((κ−1)β−1,∞)T

dT λ

∫
R

T

dT ω exp{ jβ−1ωωω†1} exp{ jωωω†Λ1}
∑

i

Ei,

(A.9)

where 1 is the all-1 column vector, ω̂ωω is a diagonal matrix such that ωωω ≡ ω̂ωω1, and

Ei ≡ exp


−jT −1

D∑
q=0

i†ω̂ωω
(

I − 1

N
S†SA

)q

S†SAi


. (A.10)

In order to deal with the expectation in (A.9), the following transform will be useful:

exp

{
− j

T
C†B

}
= 1

(2π/T )dim B

∫
R

dim B
ddim Bc

∫
R

dim B
ddim Bb

× exp

{
j
T

2
c†c

}
exp

{
−j

T

2
b†b

}
cos

{
c†C + b†C + c†B − b†B√

2

}
. (A.11)

If we let C ≡
D∑

q=0
S(I − S†SA/N)qω̂ωωi and B ≡ SAi, then we may apply the transform (A.11)

to the expectation in (A.10):

Ei ≡ exp


−jT −1

D∑
q=0

i†ω̂ωω
(

I − 1

N
S†SA

)q

S†SAi




= 1

(2π/T )Tβ−1

∫
R

Tβ−1
dTβ−1

c

∫
R

Tβ−1
dTβ−1

b exp

{
j
T

2
c†c

}
exp

{
−j

T

2
b†b

}
Fi, (A.12)

where

Fi ≡ cos

{∑D
q=0 (c† + b†)S(I − S†SA/N)qω̂ωωi + (c† − b†)SAi√

2

}
. (A.13)

Now two considerations may be made:

(1) In order for the integrals in (A.12) to converge, the components of b and c must be of
order T −1/2. Hence, in the large T limit any powers of b and c larger than quadratic may
be neglected.

(2) Up to second order in x, the following equalities hold:

cos x = exp(−x2/2) = exp(−x2/2). (A.14)
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Taking these two considerations into account we may write

Fi = exp


−

(∑D
q=0 (c† + b†)S(I − S†SA/N)qω̂ωωi + (c† − b†)SAi

2

)2

. (A.15)

The following results from random matrix theory [28] will be useful to evaluate the
expectation (A.15):

(I − S†S/N) q =
q∑

ξ=0

(
q

ξ

)(−1

N

)ξ

(S†S)ξ , (A.16)

Sab†S† = a†bI, (A.17)

S(S†S)ξ ab†(S†S)ηS† = f (T , β, ξ + η)a†bI, (A.18)

where f is a scalar function defined as follows:

f (T , β, ξ)I ≡ 1

T
S(S†S)ξ S† = T ξ

(
SS†

T

)ξ+1

. (A.19)

In the infinite matrix limit, the function f is given by [28]

f (T , β, ξ) = β−ξ−1T ξ

ξ + 1

ξ+1∑
i=1

(
ξ + 1

i

)(
ξ + 1

i − 1

)
βi. (A.20)

A.1. Power distribution in the VIP channel

In this section, we will analyse the case of no interference cancellation, that is D = 0. We do,
however, allow for an arbitrary amplitude distribution.

Inserting (A.17) into (A.15) yields

Fi = exp

{
−
(

(c† + b†)Sω̂ωωi + (c† − b†)SAi
2

)2
}

= exp

{
−1

4
{ωωω†ωωω(c† + b†)(c + b) + T U(c† − b†)(c − b) + 2ωωω†A1(c†c − b†b)}

}
, (A.21)

where U is the average power (squared amplitude) per transmitter. Inserting the expression
for Fi back into (A.12) we obtain

Ei ≡ exp


−jT −1

0∑
q=0

i†ω̂ωω
(

I − 1

N
S†SA

)q

S†SAi




= 1

(2π/T )Tβ−1

∫
R

Tβ−1
dTβ−1

c

∫
R

Tβ−1
dTβ−1

b exp

{
j
T

2
c†c

}
exp

{
−j

T

2
b†b

}

× exp

{
−1

4
{ωωω†ωωω(c† + b†)(c + b) + T U(c† − b†)(c − b) + 2ωωω†A1(c†c − b†b)}

}
.

(A.22)
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The following two unity expressions may be inserted into (A.22) without altering its result:

β−1
∫ ∞

−∞
dφ δ

{
φβ−1 − 1

2
(c† + b†)(c + b)

}

= Tβ−1
∫ ∞

−∞

∫ ∞

−∞

dφ d�

2π
exp

{
jT �

(
φβ−1 − 1

2
(c† + b†)(c + b)

)}
= 1, (A.23)

β−1
∫ ∞

−∞
dχ δ

{
β−1χ − j

2
(c†c − b†b)

}

= Tβ−1
∫ ∞

−∞

∫ ∞

−∞

dχ dP

2π
exp

{
jT P

(
β−1χ − j

2
(c†c − b†b)

)}
= 1. (A.24)

Inserting (A.23) and (A.24) into (A.22) and rewriting everything in terms of φ and χ as
dictated by the delta functions yields

Ei = T 2β−2

(2π/T )Tβ−1
(2π)2

∫
R

Tβ−1
dTβ−1

c

∫
R

Tβ−1
dTβ−1

b

∫ ∞

−∞
dφ

∫ ∞

−∞
d�

∫ ∞

−∞
dχ

∫ ∞

−∞
dP

× exp{Tβ−1χ} exp{ jT �φβ−1} exp{ jT Pβ−1χ}
× exp{ jβ−1χωωω†A1} exp

{
−1

2
φωωω†ωωω

}
exp

{
T P

2
(c†c − b†b)

}

× exp

{
−j

T �

2
(c† + b†)(c + b)

}
exp

{
−T U

4
(c† − b†)(c − b)

}
. (A.25)

The c and b integrals may be performed analytically, and (A.25) becomes

Ei = T 2β−2

(2π/T )Tβ−1
(2π)2

∫ ∞

−∞
dφ

∫ ∞

−∞
d�

∫ ∞

−∞
dχ

∫ ∞

−∞
dP

× exp{Tβ−1χ} exp{ jβ−1χωωω†A1} exp

{
−1

2
φβ−1ωωω†ωωω

}

× exp


Tβ−1


j�φ + jPχ + ln

2π/T√
2j� − 2P + U

√
jP 2+2�U

2�+2jP−jU





 . (A.26)

In the large T limit, the P and � integrals are dominated by the term for which the value of
the exponent is largest. That term is given by � = −j(φ − χ2U)/2φ2 and P = −jχU/φ.
Inserting these expressions into (A.26) we may deem the P and � variables as integrated,
yielding

Ei = 2−2π−2T 2β−2U
−Tβ−1/2

∫ ∞

−∞
dφ

∫ ∞

−∞
dχ exp{ jβ−1χωωω†A1} exp

{
−1

2
φβ−1ωωω†ωωω

}

× exp

{
Tβ−1

{
χ +

1

2
+

χ2U

2φ
+

1

2
ln φ

}}
. (A.27)
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Inserting (A.27) back into (A.9) we obtain the following expression for the number of
allowed inputs:

N (T , β, A, κ) = 2−2π−2−T T 2β−2
∫ ∞

−∞
dφ

∫ ∞

−∞
dχ

∫
R

T

dT ω

∫
((κ−1)β−1,∞)T

dT λ

× exp{ jβ−1ωωω†1} exp{ jωωω†Λ1} exp{ jβ−1χωωω†A1} exp

{
−1

2
φβ−1ωωω†ωωω

}

× exp

{
Tβ−1

{
χ +

1

2
+

χ2U

2φ
+

1

2
ln

φ

U

}}
. (A.28)

After performing the T ω-integrals, expression (A.28) becomes

N (T , β, A, κ) = 2T/2−2π−2−T/2T 2β−2+T/2
∫ ∞

−∞
dφ

∫ ∞

−∞
dχ

∫
((κ−1)β−1,∞)T

dT λ

×φ−T/2 exp

{
Tβ−1

{
χ +

1

2
+

χ2U

2φ
+

1

2
ln

φ

U

}}

× exp

{−β

2φ
(β−11† + β−1χ1†A + 1†Λ)(β−11 + β−1χA1 + Λ1)

}
. (A.29)

The T λ-integrals may be performed analytically (recall λ are the components of the vector
�1), yielding

N (T , β, A, κ) = 2T −2π−2T 2β−2
∫ ∞

−∞
dφ

∫ ∞

−∞
dχ

× exp

{
Tβ−1

{
χ +

1

2
+

χ2U

2φ
+

1

2
ln

φ

U
+

1

β−1

1

T

T∑
t=1

ln Q(ξt )

}}
, (A.30)

where

Q(ξt ) ≡ 1√
2π

∫ ∞

ξt

dx e− x2

2 , (A.31)

ξt ≡ κ + atχ√
βφ

, (A.32)

and at is the amplitude of the tth transmitter, i.e. the tth eigenvalue of A.
The sum inside the exponential in (A.30) may be viewed as an average over the amplitude

(or power) distribution of the T transmitters. Let ψ(U) be the normalized power distribution
for the transmitters, then as T goes to infinity we may write

1

T

T∑
t=1

ln Q(ξt ) =
∫ ∞

0
dUψ(U) ln

{
1√
2π

∫ ∞

κ+
√

Uχ√
βφ

dx e− x2

2

}
. (A.33)

And we may rewrite (A.30) as

N (T , β, A, κ) = 2T −2π−2T 2β−2
∫ ∞

−∞
dφ

∫ ∞

−∞
dχ

× exp

{
Tβ−1

{
χ +

1

2
+

χ2U

2φ
+

1

2
ln

φ

U
+ β

∫ ∞

0
dUψ(U) ln Q(σ)

}}
,

(A.34)
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where

σ ≡ κ +
√

Uχ√
βφ

. (A.35)

As T goes to infinity, all that is required to integrate φ and χ is maximizing the exponent in
(A.34) with respect to both variables. The maximum is given by the simultaneous solution to
the equations

1 +
χU

φ
+

√
β

φ

∫ ∞

0
dU ψ(U)

√
U

Q′(σ )

Q(σ)
= 0

1 − χ2U

φ
− β

∫ ∞

0
dU ψ(U)

Q′(σ )

Q(σ)
σ = 0




. (A.36)

A.2. Linear parallel interference cancellation in the VIP channel

In this section, we restrict the analysis to the case of a uniform amplitude distribution A = I,
but allow for an arbitrary number D of interference cancellation stages. Once we expand the
square inside the expectation (A.15), equations (A.16)–(A.18) are the expressions we need to
evaluate Fi, which may be rewritten as follows:

Fi = exp

[
−�D

4
(c† + b†)(c + b)ωωω†ωωω − �D

2
ωωω†1(c†c − b†b) − T

4
(c† − b†)(c − b)

]
, (A.37)

where �D and �D are defined as

�D(T , β) ≡
D∑

q=0

q∑
ξ=0

D∑
t=0

t∑
η=0

(
q

ξ

)(
t

η

)( −1

Tβ−1

)ξ+η

f (T , β, ξ + η), (A.38)

�D(T , β) ≡
D∑

q=0

q∑
ξ=0

(
q

ξ

)( −1

Tβ−1

)ξ

f (T , β, ξ). (A.39)

Inserting the expression for Fi back into (A.12) we obtain

Ei = 1

(2π/T )Tβ−1

∫
R

Tβ−1
dTβ−1

c

∫
R

Tβ−1
dTβ−1

b exp

{
j
T

2
c†c

}
exp

{
−j

T

2
b†b

}

× exp

[
−�D

4
(c† + b†)(c + b)ωωω†ωωω − �D

2
ωωω†1(c†c − b†b) − T

4
(c† − b†)(c − b)

]
.

(A.40)

Inserting expressions (A.23) and (A.24) into (A.40) yields

Ei = T 2β−2

(2π/T )Tβ−1
(2π)2

∫
R

Tβ−1
dTβ−1

b

∫
R

Tβ−1
dTβ−1

c

∫ ∞

−∞
dφ

∫ ∞

−∞
d�

∫ ∞

−∞
dχ

∫ ∞

−∞
dP

× exp{Tβ−1χ} exp{ jT �φβ−1} exp{ jT Pβ−1χ}
× exp

{
−�D

2
φβ−1ωωω†ωωω

}
exp{ j�Dβ−1χωωω†1} exp

{
T P

2
(c†c − b†b)

}

× exp

{
−T

4
(c† − b†)(c − b)

}
exp

{
−j

T �

2
(c† + b†)(c + b)

}
. (A.41)
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The c and b integrals may be performed analytically, and expression (A.41) becomes

Ei = T 2β−2

(2π/T )Tβ−1
(2π)2

∫ ∞

−∞
dφ

∫ ∞

−∞
d�

∫ ∞

−∞
dχ

∫ ∞

−∞
dP

× exp{Tβ−1χ} exp

{
−�D

2
φβ−1ωωω†ωωω

}
exp{ j�Dβ−1χωωω†1}

× exp


Tβ−1


jPχ + j�φ + ln

2π/T

√
2j� − 2P + 1

√
jP 2+2�

2�+2jP−j




 . (A.42)

In the large T limit the P and � integrals are dominated by the term for which the value of the
exponent is largest. That term is given by � = −j(φ − χ2)/2φ2 and P = −jχ/φ. Inserting
these expressions into (A.42) we may deem the P and � variables as integrated, yielding

Ei = 2−2π−2T 2β−2
∫ ∞

−∞
dφ

∫ ∞

−∞
dχ exp

{
−�D

2
φβ−1ωωω†ωωω

}
exp{ j�Dβ−1χωωω†1}

× exp

{
Tβ−1

(
χ +

1

2
+

χ2

2φ
+

1

2
ln φ

)}
. (A.43)

Inserting (A.43) back into (A.9) we obtain the following expression for the number of
VIP inputs:

N (T , β, κ,D) = 2−2π−2−T T 2β−2
∫ ∞

−∞
dφ

∫ ∞

−∞
dχ

∫
R

T

dT ω

∫
((κ−1)β−1,∞)T

dT λ

× exp{ jωωω†Λ1} exp

{
−�D

2
φβ−1ωωω†ωωω

}
exp{ j�Dβ−1χωωω†1} exp{ jβ−1ωωω†1}

× exp

{
Tβ−1

(
χ +

1

2
+

χ2

2φ
+

1

2
ln φ

)}
. (A.44)

After performing the T ω-integrals, expression (A.45) becomes

N (T , β, κ,D) = 2T/2−2π−2−T/2T 2β−2+T/2�
−T/2
D

∫ ∞

−∞
dφ

∫ ∞

−∞
dχ

∫
((κ−1)β−1,∞)T

dT λ

× exp

{ −β

2φ�D

(β−1(1 + χ�D)1† + 1†Λ)(β−1(1 + χ�D)1 + Λ1)

}

×φ−T/2 exp

{
Tβ−1

(
χ +

1

2
+

χ2

2φ
+

1

2
ln φ

)}
. (A.45)

The T λ-integrals may be performed analytically (recall that λ are the components of the
vector �1), yielding

N (T , β, κ,D) = 2T −2π−2T 2β−2
∫ ∞

−∞
dφ

∫ ∞

−∞
dχ

× exp

{
T

2β

(
2χ + 1 +

χ2

φ
+ ln φ + 2β ln Q(ξD)

)}
, (A.46)

where

ξD ≡ (χ + κ)

√
1

φβ

�D√
�D

. (A.47)
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As T goes to infinity, all that is required to integrate φ and χ is maximizing the exponent in
(A.46) with respect to both variables. The maximum is given by the simultaneous solution to
the equations

1 − χ2

φ
− β

Q′(ξD)

Q(ξD)
ξD = 0

1 +
χ

φ
+ β

ξD

χ + κ

√
�D

�D

Q′(ξD)

Q(ξD)
= 0


 . (A.48)

Appendix B. Spectral efficiency of the CDMA VIP channel

In this section, the unbounded monotonic behaviour of ε∞ as a function of β is shown.
Inserting equations (9) and (12) into (16) we obtain

ε∞(β, A, κ) ≡ βC∞(β, A, κ) = β +
1

ln 2
g(β, A, κ). (B.1)

For simplicity and without loss of generality, the channel is assumed noiseless (κ = 0) and
the average power per user is assumed to be unity (U = 1). In this case, the value of χ which
solves equation (11) is χ = −1, and equations (10), (11) and (13) simplify to

g(β, A) = −1

2
+

1

2φ
+

1

2
ln φ + β

∫ ∞

0
dUψ(U) ln Q(σ), (B.2)

1 − 1

φ
− β

∫ ∞

0
dUψ(U)

Q′(σ )

Q(σ)
σ = 0, (B.3)

ψ(U ; r) = r
(rU)r/2−1

2r/2�(r/2)
exp

{
− rU

2

}
, (B.4)

where Q(σ) = 1√
2π

∫ ∞
σ

dt exp
{− t2

2

}
and σ = −√

U√
βφ

.
The asymptotic capacity C∞ is upper bounded by 1 so it is clear that equation (B.1)

approaches zero from above as the channel load β vanishes. Indeed as β → 0 it is verified
that φ becomes 1 for any value of r, which in turn means that the asymptotic capacity C∞
approaches 1 and the spectral efficiency ε∞ approaches zero. However, as β gets arbitrarily
large the parameter φ becomes linearly proportional to β; it is verified that the constant
of proportionality is in the interval

(
4
π2 ,

2
π

)
and it is determined by the power distribution

parameter r, which represents the number of degrees of freedom in the chi-square power
distribution ψ(U). The constant of proportionality is smallest for r = 1 and largest for
r → ∞. As β gets large, equation (B.2) becomes

g(β → ∞, A) = −1

2
+

1

2ξβ
+

1

2
ln ξβ + β

∫ ∞

0
dU ψ(U) ln Q(σ), (B.5)

where σ = −√
U

β
√

ξ
and ξ is a number in the interval

(
4
π2 ,

2
π

)
. If (B.5) is inserted into (B.1), the

following expansion can be made about β → ∞:

ε∞(β → ∞, A) = 1

ln 2

√
2

πξ

∫ ∞

0
dU ψ(U)

√
U +

ln{βξ} − 1

2 ln 2
+ ϑ(β−1). (B.6)

Expression (B.6) is a monotonous increasing function of β, which means that ε∞ never stops
growing with the channel load.
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